Frequently Asked Questions

Who is Apex Clean Energy?

Apex Clean Energy is an independent renewable energy company based in Charlottesville, Virginia. We develop, construct, own, and operate wind and solar energy facilities across the country. Our team has completed nearly 3 GW of projects that are now operating. Find more information at apexcleanenergy.com.

Vitol, which acquired Swiftwater Solar LLC, is the project owner. Vitol will construct, own and operate this Project.  Vitol is a world leader in energy, expertly serving the world’s energy markets for 55 years.; Vitol  primary business is the trading and distribution of energy products globally. Founded in Rotterdam in 1966, today Vitol Holding serves clients from over 40 offices worldwide. Vitol is invested in energy assets globally including circa 6,500 service stations across Africa, Australia, Brazil, Eurasia and in Northwest Europe. Customers include national energy companies, multinationals, leading industrial and chemical companies, and the world’s largest airlines.  Vitol also has a significant presence and expertise in North American power markets.  Vitol affiliates are also involved in renewable green gas transactions.  Lastly, Vitol is currently making investments in renewable energy assets including solar, wind, and storage.

Who is Pocono Manor Investors?

PMI purchased Pocono Manor in 2005, and has been a conscientious steward of the property, and active member of the local community, since that time. Jim Cahill, Managing Partner, is a resident of the area, and overseas all aspects of the property and maintains local relationships at the community and business levels. PMI is owned by the Bailey-Jerome family, based in Brooklyn & Manhattan, New York, and is committed to the long-term preservation of Pocono Manor’s singular qualities of natural beauty and outdoor attractions. Although devastated by the fire that destroyed the historic Inn at Pocono Manor in November 2019, it is PMI’s intention to rebuild a new facility to take its place.

Why solar?

Over the past few years, demand for renewable energy has grown dramatically, driven in part by corporations with sustainability goals. More than 200 companies worldwide have made commitments to go 100% renewable. Because solar energy is clean, reliable, and affordable, it has earned the spot as the fastest-growing source of electricity in the world.

Are solar panels noisy?

Solar panels themselves are completely silent; however, certain pieces of equipment on a solar farm do emit sound. Transportation and maintenance equipment—including cars, trucks, lawnmowers, and string trimmers—is a common source of noise on solar farms that most people are used to hearing elsewhere. In addition to these sources, inverters and transformers on a solar farm will generate low levels of sound. A study in 2014 conducted at a solar facility in Australia determined that direct noise from the solar facility experienced at nearby residences would reach only 30 dBA, which is around the ambient noise level at night in a rural area. This indicates that any noise from the solar inverters would be imperceptible to nearby residents.

What are the visual impacts of solar?

Because solar collection devices are usually only about 10 feet tall, and solar farms are often surrounded by trees, the visual impacts of a solar farm to the surrounding community are very minimal. At Swiftwater Solar, due to the natural vegetation and topography of the site, surrounding roadways and residences will have very limited views of the facility. We’ve proactively identified the areas that may experience visibility and have added an additional setback and vegetative screening to protect neighbors’ views.

Will this project raise my power bills?

Swiftwater Solar will not raise local electricity prices. In fact, the cost of solar power has dropped by more than 70% since 2010 and is now one of the lowest-cost options for electricity generation. When comparing unsubsidized, levelized costs of energy, utility-scale solar energy is comparable in price to wind energy and natural gas combined-cycle power, and it is significantly more cost-effective than coal or nuclear power. Solar power also has the benefit of producing electricity during the times of day when demand and power costs are the highest. On a midsummer afternoon, for example, when homes and businesses are running their air conditioners at full power, a solar facility is generating at full power as well, which helps close the gap between electricity supply and electricity demand. This has the effect of lowering electricity costs across the board.

Where will the power generated from the project go?

The power from Swiftwater Solar will be delivered into the local electrical grid, helping to diversify Pennsylvania’s energy portfolio. This is the pool that supplies all Pennsylvania State consumers with electricity. Pennsylvania utilities and corporations are prime candidates to purchase the electricity from Swiftwater Solar.

What happens if the solar farm goes out of use?

There are often concerns about what happens to a solar farm once it stops producing energy or if the owner goes out of business. As part of the permitting process, Apex must provide a complete detailed decommissioning plan that is funded by an irrevocable form of financial security to cover decommissioning costs. This ensures that money is always available to remove the solar farm if or when it is no longer operable.

Swiftwater’s lease agreement requires that the lessee decommission the project at the end of its operational life and restore the land to its pre-facility state at the project’s expense and at no cost to local landowners or taxpayers. The lease further requires that the project post financial security on or before the project’s twelfth year of operation to ensure funds are in place for decommissioning and restoration.

What happens to solar panels at the end of their life?

At the end of a solar facility’s useful life, estimated to be about 30 years on average, panels can be removed and recycled. Recycling programs are being developed that are expected to recover about 90% of the materials used in the panels, much of which is glass. In fact, the International Renewable Energy Agency projects that the value of recovered materials could exceed $15 billion by 2050 and that the material recovered could be used to remanufacture two billion solar panels. The solar industry is actively developing new systems and protocols in anticipation of the future retirement of solar panels. These efforts include establishing uniform, cost-effective recycling practices (e.g., identifying vendors and service providers, aggregating end-of-life solar components, and streamlining and improving recycling processes).

Why are you choosing to site this project in a cloudy area?

The cost of solar energy has decreased significantly in the past 10 years, and it is now economically viable to generate solar electricity even in cloudier places, such as Pennsylvania.

You might be surprised to learn that solar panels still produce between 10-25% of their typical output even on a cloudy day.

How will Swiftwater Solar generate energy in the winter? Will it be impacted by heavy snow or extreme cold?

You might be surprised to learn that sunny cold weather is actually an ideal condition for solar panels to perform optimally. On the other hand, extremely hot climates actually make solar panels less efficient.

As far as snow is concerned, a light dusting of snow has little impact on the panels and can be easily blown off by wind. Because panels are tilted at an angle, snow will also slide off of panels over time, cleaning the panel as it melts and slides off. After heavier snowfalls panels will be cleared by facility employees. Interestingly enough, because of the reflectivity, or albedo effect, of snow, having snow on the ground near the panels can contribute towards them producing more electricity, with the smooth white surface reflecting light like a mirror.

https://www.energy.gov/eere/articles/let-it-snow-how-solar-panels-can-thrive-winter-weather

Will anything be placed on my property without my permission?

Project components will only be sited on private properties whose owners sign a lease agreement with Swiftwater Solar. All agreements are fully voluntary between landowners and the project.

What happens to neighboring property values?

Recent research on the impact of solar farms on property values supports the conclusion that solar facilities do not decrease property values. Furthermore, there is no discernable impact on property values regardless of whether solar farms are located near residential, agricultural, or industrial properties.

Additionally, studies have found that substantial benefits are flowing to communities where solar farms are located. A report by the University of North Carolina examined the economic impact of more than 100 solar projects in over 50 countries and found that solar facilities have increased the tax revenue from agricultural property by between 1,000% and 10,000%.

Are solar panels safe?

Swiftwater Solar and most other utility-scale projects use panels with no harmful chemicals. There is one type of solar panel that may contain some harmful materials. Depending on the type of panel being used, these materials can include cadmium telluride, copper indium selenide, sulfur hexafluoride, and silicon tetrachloride. Cadmium telluride is only used in thin-film solar modules; Swiftwater will not be using this type of panel.

It is important to note that no matter the panel type, the harmful substances named above are fully contained and unreactive in the solar panels. Because they are embedded into the panels during manufacturing, there is simply no physical mechanism or chemical reaction that would allow these materials to escape the solar panels during operation.

Solar panels have not been linked to any adverse human health issues. On the contrary, they have proved beneficial to human health by displacing the air pollution caused by fossil fuel electric generation, conserving clean water, and reducing the harmful impacts of climate change.

The North Carolina Clean Energy Center at North Carolina State University conducted an exhaustive study examining the fire, safety, and public health risks of utility-scale solar energy projects, including concerns regarding toxicity, electromagnetic fields, and electric shock potential. For each of these concerns, the study concluded that “the negative health and safety impacts of utility-scale PV development were shown to be negligible, while the public health and safety benefits of installing these facilities are significant and far outweigh any negative impacts.”

Can solar panels catch fire?

Evidence shows that fires caused by solar equipment are rare, and they only occur if an improper connection or other electrical fire hazard is present. In most circumstances, good system design, product selection, and installation procedures are enough to minimize the risk of fire to the greatest extent possible. These concerns are further addressed by product safety standards, National Electric Code provisions, and inspections that take place prior to solar facility energization.

Another factor that limits solar panel fires is the small portion of materials in the panels that are flammable, which prevents them from self-sustaining a significant fire. The majority of each solar panel is composed of protective glass that makes up over three quarters of the panels’ weight.

Will Swiftwater Solar impact runoff, erosion, or flood plains?

No. To minimize the amount of earth that must be disturbed and graded, Swiftwater Solar has been designed to be built on the flattest portions of the project site. In addition, the land beneath and around the solar panels will be planted with native grasses, which will help stabilize the soil and prevent runoff.

The project is required by law to receive state approval of a stormwater management plan that ensures no excess sediment or water volume can flow into nearby waterways or neighboring properties. In addition, Swiftwater Solar will comply with all federal, state, and local laws, including those related to stormwater and runoff management.

Before the project begins construction, it will be required to receive a Stormwater Permit from the Monroe County Soil Conservation District and the Pennsylvania DEP. The application for the permit is being prepared by a licensed, third-party civil engineer. The application will include a full analysis of the project’s anticipated impacts to water flow, considering the hydrology and topography of the project site and the specifics of the project’s design, and it will propose a set of best practice management techniques to ensure runoff from the project does not impact neighbors, existing infrastructure, or waterways. Construction of the project will not begin until both the Monroe County Conservation District and Pennsylvania DEP have approved the Stormwater Permit Application.

Should I be concerned about impacts to wildlife?

No. Studies show that in addition to helping displace emissions produced by fossil fuel generation, solar energy facilities can improve biodiversity and benefit wildlife by improving habitat in their immediate vicinity (https://pubs.acs.org/doi/full/10.1021/acs.est.8b00020).          

Although solar panels may modify wildlife habitat in the project’s immediate footprint, evidence suggests that these changes are balanced by other habitat-based benefits, and there is currently no evidence to support a conclusion that solar farms have an adverse impact on wildlife’s use of the land surrounding the project. As a part of the permitting process, Swiftwater Solar is consulting with state and federal wildlife agencies, including the Pennsylvania Game Commission (PGC) and the U.S. Fish and Wildlife Service to ensure that wildlife is adequately protected.

What kind of traffic is construction going to generate?

Construction is expected to take about 8 to 10 months, with a variety of activities taking place over that time, some requiring more activity and some requiring less. On average, construction will require about 10 to 20 truck trips per day, but during the 9-month period when racking systems and modules are being delivered to the project site, traffic to and from the project site could increase to 50 to 75 truck trips per week. Most delivery vehicles will be standard tractor trailers and dump trucks. Once the project is operational, traffic will be insignificant, limited primarily to pickup trucks and other small vehicles.

Does runoff from a solar project impact water temperature of nearby water features?

The paneled area of this project will be planted with what is called a meadow mix, which is a seed mix made up of native annual and perennial species that takes root quickly and requires minimal mowing. This type of surface cover helps to promote infiltration of water, and studies conducted by Earth Engineering, INC have verified that infiltration is a viable stormwater treatment for this site. Concentrated runoff from impervious surfaces or excess water from the paneled area will be captured by our 16 infiltration basins, each placed specifically where we expect to maximize their impact on stormwater runoff. Water that enters the infiltration basins is released from the bottom of the basin at a very slow rate of return to the water system. Once runoff water enters the infiltration process, it will move through the subsurface and be cooled back to normal temperatures before they enter temperature sensitive waters. The closest basin to Swiftwater Creek has an 800 foot flow path.

Some of the basins for Swiftwater Solar will release into local wetlands, none of which will have primary disturbances from runoff. We are required by the Monroe County Conservation District (MCCD) to have licensed environmental scientists perform anti-degradation analysis to ensure there will be no secondary impact to wetland and their buffers. Those scientists have determined that the water that our basins will let out into those wetlands will have no secondary impacts.

On a much larger scale, it is a fact that continued use of fossil fuels will raise the temperature globally. The currently predicted 2.5 to 10 degree temperature increase over the next 100 years will cause significant, irreparable harm to not only the fish and wildlife living in Swiftwater Creek, but the fish and wildlife living in every creek on Earth. Grid-scale renewable energy projects like Swiftwater Solar are critical to mitigate that temperature increase and this location is ideal for a grid-scale project.

Is the water volume in local water features impacted by solar projects?

We have designed this project to have little to no impact on local water volumes, per the requirements of MCCD, which dictate that post-development peak flow rates must be detained or reduced from the 2, 5, 25, 50, and 100-year storm events pre-development. These stringent requirements not only control high flow rates and erosive velocities of the outfall channels but also mitigate large post-development volumes of water flushing the river system.

All runoff volume impacted by Swiftwater Solar will be released into the system at a slower rate than what is the case currently with the use of basins, which promote higher infiltration rates and ensures groundwater recharge after large storm events.

Do solar projects (and their associated grass clippings) impact the nutrient load of nearby water features?

As described previously, the native meadow mix we will plant onsite does not have to be cut as often as the bluegrass, ryegrass, or fescue on a typical Pennsylvania lawn. The Pennsylvania Department of Environmental Protection (PA DEP) Solar Panel Farm Guidance and Considerations document, which we will are abiding by, requires that onsite vegetation not be mowed more than 4 times per year and should not be cut to less than 4 inches in height. In combination, we don’t expect to have much, if any, of an impact on the nutrient load of Swiftwater Creek or any other local water features.

Our infiltration basins are designed to meet PA DEP water quality requirements. Those requirements are computed for each contributing watershed to guarantee they are tailored to local ecosystems, and not one-size-fits-all.